跳转至

伯努利数

伯努利数 \(B_n\) 是一个与数论有密切关联的有理数序列。前几项被发现的伯努利数分别为:

\(B_0=1,B_1=-\frac{1}{2},B_2=\frac{1}{6},B_3=0,B_4=-\frac{1}{30},\dots\)

等幂求和

伯努利数是由雅各布·伯努利的名字命名的,他在研究 \(m\) 次幂和的公式时发现了奇妙的关系。我们记

\[ S_{m}(n)=\sum_{k=0}^{n-1}k^m=0^m+1^m+\dots+(n-1)^m \]

伯努利观察了如下一列公式,勾画出一种模式:

\[ \begin{aligned} S_0(n)&=n\\ S_1(n)&=\frac{1}{2}n^2-\frac{1}{2}n\\ S_2(n)&=\frac{1}{3}n^3-\frac{1}{2}n^2+\frac{1}{6}n\\ S_3(n)&=\frac{1}{4}n^4-\frac{1}{2}n^3+\frac{1}{4}n^2\\ S_4(n)&=\frac{1}{5}n^5-\frac{1}{2}n^4+\frac{1}{3}n^3-\frac{1}{30}n \end{aligned} \]

可以发现,在 \(S_m(n)\)\(n^{m+1}\) 的系数总是 \(\frac{1}{m+1}\)\(n^m\) 的系数总是 \(-\frac{1}{2}\)\(n^{m-1}\) 的系数总是 \(\frac{m}{12}\)\(n^{m-3}\) 的系数是 \(-\frac{m(m-1)(m-2)}{720}\)\(n^{m-4}\) 的系数总是零等。

\(n^{m-k}\) 的系数总是某个常数乘以 \(m^{\underline{k}}\)\(m^{\underline{k}}\) 表示下降阶乘幂,即 \(\frac{m!}{(m-k)!}\)

递推公式

\[ \begin{aligned} S_m{(n)}&=\frac{1}{m+1}(B_0n^{m+1}+\binom{m+1}{1}B_1 n^m+\dots+\binom{m+1}{m}B_m n) \\ &=\frac{1}{m+1}\sum_{k=0}^{m}\binom{m+1}{k}B_kn^{m+1-k} \end{aligned} \]

伯努利数由隐含的递推关系定义:

\[ \begin{aligned} \sum_{j=0}^{m}\binom{m+1}{j}B_j&=0,(m>0)\\ B_0&=1 \end{aligned} \]

例如,\(\binom{2}{0}B_0+\binom{2}{1}B_1=0\),前几个值显然是

\(n\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(\dots\)
\(B_n\) \(1\) \(-\frac{1}{2}\) \(\frac{1}{6}\) \(0\) \(-\frac{1}{30}\) \(0\) \(\frac{1}{42}\) \(0\) \(-\frac{1}{30}\) \(\dots\)

证明

利用归纳法证明

这个证明方法来自 Concrete Mathematics 6.5 BERNOULLI NUMBER。

运用二项式系数的恒等变换和归纳法进行证明:

\[ \begin{aligned} S_{m+1}(n)+n^{m+1}&= \sum_{k=0}^{n-1}(k+1)^{m+1}\\ &=\sum_{k=0}^{n-1}\sum_{j=0}^{m+1}\binom{m+1}{j}k^j\\ &=\sum_{j=0}^{m+1}\binom{m+1}{j}S_j(n) \end{aligned} \]

\(\hat{S}_{m}(n)=\frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k}B_kn^{m+1-k}\),我们希望证明 \(S_m(n)=\hat{S}_m(n)\),假设对 \(j\in[0,m)\),有 \(S_j(n)=\hat{S}_j(n)\)

将原式中两边都减去 \(S_{m+1}(n)\) 后可以得到:

\[ \begin{aligned} S_{m+1}(n)+n^{m+1}&=\sum_{j=0}^{m+1}\binom{m+1}{j}S_j(n)\\ n^{m+1}&=\sum_{j=0}^{m}\binom{m+1}{j}S_j(n)\\ &=\sum_{j=0}^{m-1}\binom{m+1}{j}\hat{S}_j(n)+\binom{m+1}{m}S_m(n) \end{aligned} \]

尝试在式子的右边加上 \(\binom{m+1}{m}\hat{S}_m(n)-\binom{m+1}{m}\hat{S}_m(n)\) 再进行化简,可以得到:

\[ n^{m+1}=\sum_{j=0}^{m}\binom{m+1}{j}\hat{S}_j(n)+(m+1)(S_m(n)-\hat{S}_m(n)) \]

不妨设 \(\Delta = S_m(n)-\hat{S}_m(n)\),并且将 \(\hat{S}_j(n)\) 展开,那么有

\[ \begin{aligned} n^{m+1}&=\sum_{j=0}^{m}\binom{m+1}{j}\hat{S}_j(n)+(m+1)\Delta\\ &=\sum_{j=0}^{m}\binom{m+1}{j}\frac{1}{j+1}\sum_{k=0}^{j}\binom{j+1}{k}B_kn^{j+1-k}+(m+1)\Delta\\ \end{aligned} \]

将第二个 \(\sum\) 中的求和顺序改为逆向,再将组合数的写法恒等变换可以得到:

\[ \begin{aligned} n^{m+1}&=\sum_{j=0}^{m}\binom{m+1}{j}\frac{1}{j+1}\sum_{k=0}^{j}\binom{j+1}{j-k}B_{j-k}n^{k+1}+(m+1)\Delta\\ &=\sum_{j=0}^{m}\binom{m+1}{j}\frac{1}{j+1}\sum_{k=0}^{j}\binom{j+1}{k+1}B_{j-k}n^{k+1}+(m+1)\Delta\\ &=\sum_{j=0}^{m}\binom{m+1}{j}\frac{1}{j+1}\sum_{k=0}^{j}\frac{j+1}{k+1}\binom{j}{k}B_{j-k}n^{k+1}+(m+1)\Delta\\ &=\sum_{j=0}^{m}\binom{m+1}{j}\sum_{k=0}^{j}\binom{j}{k}\frac{B_{j-k}}{k+1}n^{k+1}+(m+1)\Delta \end{aligned} \]

对两个求和符号进行交换,可以得到:

\[ n^{m+1}=\sum_{k=0}^{m}\frac{n^{k+1}}{k+1}\sum_{j=k}^{m}\binom{m+1}{j}\binom{j}{k}B_{j-k}+(m+1)\Delta \]

\(\binom{m+1}{j}\binom{j}{k}\) 进行恒等变换:

\[ \binom{m+1}{j}\binom{j}{k}=\binom{m+1}{k}\binom{m-k+1}{j-k} \]

那么式子就变成了:

\[ \begin{aligned} n^{m+1}&=\sum_{k=0}^{m}\frac{n^{k+1}}{k+1}\sum_{j=k}^{m}\binom{m+1}{k}\binom{m-k+1}{j-k}B_{j-k}+(m+1)\Delta\\ &=\sum_{k=0}^{m}\frac{n^{k+1}}{k+1}\binom{m+1}{k}\sum_{j=k}^{m}\binom{m-k+1}{j-k}B_{j-k}+(m+1)\Delta\\ \end{aligned} \]

将所有的 \(j-k\)\(j\) 代替,那么就可以得到:

\[ n^{m+1}=\sum_{k=0}^{m}\frac{n^{k+1}}{k+1}\binom{m+1}{k}\sum_{j=0}^{m-k}\binom{m-k+1}{j}B_{j}+(m+1)\Delta \]

考虑我们前面提到过的递归关系

\[ \begin{aligned} \sum_{j=0}^{m}\binom{m+1}{j}B_j&=0,(m>0)\\ B_0&=1\\ \sum_{j=0}^{m}\binom{m+1}{j}B_j&=[m = 0] \end{aligned} \]

代入后可以得到:

\[ \begin{aligned} n^{m+1}&=\sum_{k=0}^{m}\frac{n^{k+1}}{k+1}\binom{m+1}{k}[m - k = 0]+(m+1)\Delta\\ &=\sum_{k=0}^{m}\frac{n^{k+1}}{k+1}\binom{m+1}{k}+(m+1)\Delta\\ &=\frac{n^{m+1}}{m+1}\binom{m+1}{m}+(m+1)\Delta\\ &=n^{m+1}+(m+1)\Delta \end{aligned} \]

于是 \(\Delta=0\),且有 \(S_m(n)=\hat{S}_m(n)\)

利用指数生成函数证明

对递推式 \(\sum_{j=0}^{m}\binom{m+1}{j}B_j=[m=0]\)

两边都加上 \(B_{m + 1}\),即得到:

\[ \begin{aligned} \sum_{j=0}^{m+1}\binom{m+1}{j}B_j&=[m=0]+B_{m+1}\\ \sum_{j=0}^{m}\binom{m}{j}B_j&=[m=1]+B_{m}\\ \sum_{j=0}^{m}\dfrac{B_j}{j!}\cdot\dfrac{1}{(m-j)!}&=[m=1]+\dfrac{B_{m}}{m!} \end{aligned} \]

\(B(z) = \sum\limits_{i\ge 0}\dfrac{B_i}{i!}z^i\),注意到左边为卷积形式,故:

\[ \begin{aligned} B(z)\mathrm{e}^z &= z+B(z)\\ B(z)&=\dfrac{z}{\mathrm{e}^z - 1} \end{aligned} \]

\(F_n(z) = \sum_{m\ge 0}\dfrac{S_m(n)}{m!}z^m\),则:

\[ \begin{aligned} F_n(z) &= \sum_{m\ge 0}\dfrac{S_m(n)}{m!}z^m\\ &= \sum_{m\ge 0}\sum_{i=0}^{n-1}\dfrac{i^mz^m}{m!}\\ \end{aligned} \]

调换求和顺序:

\[ \begin{aligned} F_n(z) &=\sum_{i=0}^{n-1}\sum_{m\ge 0}\dfrac{i^mz^m}{m!}\\ &=\sum_{i=0}^{n-1}\mathrm{e}^{iz}\\ &=\dfrac{\mathrm{e}^{nz} - 1}{\mathrm{e}^z - 1}\\ &=\dfrac{z}{\mathrm{e}^z - 1}\cdot\dfrac{\mathrm{e}^{nz} - 1}{z} \end{aligned} \]

代入 \(B(z)=\dfrac{z}{\mathrm{e}^z - 1}\)

\[ \begin{aligned} F_n(z) &= B(z)\cdot\dfrac{\mathrm{e}^{nz} - 1}{z}\\ &= \left(\sum_{i\ge 0}\dfrac{B_i}{i!} \right)\left(\sum_{i\ge 1}\dfrac{n^i z^{i - 1}}{i!}\right)\\ &= \left(\sum_{i\ge 0}\dfrac{B_i}{i!} \right)\left(\sum_{i\ge 0}\dfrac{n^{i+1} z^{i}}{(i+1)!}\right) \end{aligned} \]

由于 \(F_n(z) = \sum_{m\ge 0}\dfrac{S_m(n)}{m!}z^m\),即 \(S_m(n)=m![z^m]F_n(z)\)

\[ \begin{aligned} S \times m(n)&=m![z^m]F_n(z)\\ &= m!\sum_{i=0}^{m}\dfrac{B \times i}{i!}\cdot\dfrac{n^{m-i+1}}{(m-i+1)!}\\ &=\dfrac{1}{m+1}\sum_{i=0}^{m}\binom{m+1}{i}B_in^{m-i+1} \end{aligned} \]

故得证。

参考实现
typedef long long ll;
const int maxn = 10000;
const int mod = 1e9 + 7;
ll B[maxn];        // 伯努利数
ll C[maxn][maxn];  // 组合数
ll inv[maxn];      // 逆元(计算伯努利数)

void init() {
  // 预处理组合数
  for (int i = 0; i < maxn; i++) {
    C[i][0] = C[i][i] = 1;
    for (int k = 1; k < i; k++) {
      C[i][k] = (C[i - 1][k] % mod + C[i - 1][k - 1] % mod) % mod;
    }
  }
  // 预处理逆元
  inv[1] = 1;
  for (int i = 2; i < maxn; i++) {
    inv[i] = (mod - mod / i) * inv[mod % i] % mod;
  }
  // 预处理伯努利数
  B[0] = 1;
  for (int i = 1; i < maxn; i++) {
    ll ans = 0;
    if (i == maxn - 1) break;
    for (int k = 0; k < i; k++) {
      ans += C[i + 1][k] * B[k];
      ans %= mod;
    }
    ans = (ans * (-inv[i + 1]) % mod + mod) % mod;
    B[i] = ans;
  }
}