跳转至

IDA*

前置知识:A* 算法、迭代加深搜索

本页面将简要介绍 IDA * 算法。

定义

IDA * 为采用了迭代加深算法的 A * 算法。

优点

由于 IDA * 改成了深度优先的方式,相对于 A * 算法,它的优点如下:

  1. 不需要判重,不需要排序,利于深度剪枝。
  2. 空间需求减少:每个深度下实际上是一个深度优先搜索,不过深度有限制,使用 DFS 可以减小空间消耗。

缺点

  1. 重复搜索:即使前后两次搜索相差微小,回溯过程中每次深度变大都要再次从头搜索。

实现(伪代码)

Procedure IDA_STAR(StartState)
Begin
  PathLimit := H(StartState) - 1;
  Succes := False;
  Repeat
    inc(PathLimit);
    StartState.g = 0;
    Push(OpenStack, StartState);
    Repeat
      CurrentState := Pop(OpenStack);
      If Solution(CurrentState) then
        Success = True
      Elseif PathLimit >= CurrentState.g + H(CurrentState) then
        For each Child(CurrentState) do
          Push(OpenStack, Child(CurrentState));
    until Success or empty(OpenStack);
  until Success or ResourceLimtsReached;
end;

例题

埃及分数

在古埃及,人们使用单位分数的和(即 \(\frac{1}{a}\)\(a\in\mathbb{N}^*\))表示一切有理数。例如,\(\frac{2}{3}=\frac{1}{2}+\frac{1}{6}\),但不允许 \(\frac{2}{3}=\frac{1}{3}+\frac{1}{3}\),因为在加数中不允许有相同的。

对于一个分数 \(\frac{a}{b}\),表示方法有很多种,其中加数少的比加数多的好,如果加数个数相同,则最小的分数越大越好。例如,\(\frac{19}{45}=\frac{1}{5}+\frac{1}{6}+\frac{1}{18}\) 是最优方案。

输入整数 \(a,b\)\(0<a<b<500\)),试编程计算最佳表达式。

样例输入:

495 499

样例输出:

Case 1: 495/499=1/2+1/5+1/6+1/8+1/3992+1/14970
解题思路

这道题目理论上可以用回溯法求解,但是解答树会非常「恐怖」——不仅深度没有明显的上界,而且加数的选择理论上也是无限的。换句话说,如果用宽度优先遍历,连一层都扩展不完,因为每一层都是 无限大 的。

解决方案是采用迭代加深搜索:从小到大枚举深度上限 \(\textit{maxd}\),每次执行只考虑深度不超过 \(\textit{maxd}\) 的节点。这样,只要解的深度优先,则一定可以在有限时间内枚举到。

深度上限 \(\mathit{maxd}\) 还可以用来 剪枝。按照分母递增的顺序来进行扩展,如果扩展到 i 层时,前 \(i\) 个分数之和为 \(\frac{c}{d}\),而第 \(i\) 个分数为 \(\frac{1}{e}\),则接下来至少还需要 \(\frac{\frac{a}{b}-\frac{c}{d}}{\frac{1}{e}}\) 个分数,总和才能达到 \(\frac{a}{b}\)。例如,当前搜索到 \(\frac{19}{45}=\frac{1}{5}+\frac{1}{100}+\cdots\),则后面的分数每个最大为 \(\frac{1}{101}\),至少需要 \(\frac{\frac{19}{45}-\frac{1}{5}}{\frac{1}{101}}=23\) 项总和才能达到 \(\frac{19}{45}\),因此前 \(22\) 次迭代是根本不会考虑这棵子树的。这里的关键在于:可以估计至少还要多少步才能出解。

注意,这里使用 至少 一词表示估计都是乐观的。形式化地,设深度上限为 \(\textit{maxd}\),当前结点 \(n\) 的深度为 \(g(n)\),乐观估价函数为 \(h(n)\),则当 \(g(n)+h(n)>\textit{maxd}\) 时应该剪枝。这样的算法就是 IDA*。当然,在实战中不需要严格地在代码里写出 \(g(n)\)\(h(n)\),只需要像刚才那样设计出乐观估价函数,想清楚在什么情况下不可能在当前的深度限制下出解即可。

如果可以设计出一个乐观估价函数,预测从当前结点至少还需要扩展几层结点才有可能得到解,则迭代加深搜索变成了 IDA * 算法。

示例代码
// 埃及分数问题
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

int a, b, maxd;

long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); }

// 返回满足 1/c <= a/b 的最小 c 值
int get_first(long long a, long long b) { return b / a + 1; }

const int maxn = 100 + 5;

long long v[maxn], ans[maxn];

// 如果当前解 v 比目前最优解 ans 更优,更新 ans
bool better(int d) {
  for (int i = d; i >= 0; i--)
    if (v[i] != ans[i]) {
      return ans[i] == -1 || v[i] < ans[i];
    }
  return false;
}

// 当前深度为 d,分母不能小于 from,分数之和恰好为 aa/bb
bool dfs(int d, int from, long long aa, long long bb) {
  if (d == maxd) {
    if (bb % aa) return false;  // aa/bb 必须是埃及分数
    v[d] = bb / aa;
    if (better(d)) memcpy(ans, v, sizeof(long long) * (d + 1));
    return true;
  }
  bool ok = false;
  from = max(from, get_first(aa, bb));  // 枚举的起点
  for (int i = from;; i++) {
    // 剪枝:如果剩下的 maxd+1-d 个分数全部都是 1/i,加起来仍然不超过
    // aa/bb,则无解
    if (bb * (maxd + 1 - d) <= i * aa) break;
    v[d] = i;
    // 计算 aa/bb - 1/i,设结果为 a2/b2
    long long b2 = bb * i;
    long long a2 = aa * i - bb;
    long long g = gcd(a2, b2);  // 以便约分
    if (dfs(d + 1, i + 1, a2 / g, b2 / g)) ok = true;
  }
  return ok;
}

int main() {
  int kase = 0;
  while (cin >> a >> b) {
    int ok = 0;
    for (maxd = 1; maxd <= 100; maxd++) {  // 枚举深度上限
      memset(ans, -1, sizeof(ans));
      if (dfs(0, get_first(a, b), a, b)) {  // 开始进行搜索
        ok = 1;
        break;
      }
    }
    cout << "Case " << ++kase << ": ";
    if (ok) {
      cout << a << "/" << b << "=";
      for (int i = 0; i < maxd; i++) cout << "1/" << ans[i] << "+";
      cout << "1/" << ans[maxd] << "\n";
    } else
      cout << "No solution.\n";
  }
  return 0;
}

习题